Matriks: Penjumlahan, Pengurangan, Perkalian, Determinan, Invers, Rumus & Contoh Soal

Penjelasaan tentang Penjumlahan dan Pengurangan Matriks

(Catatan: Untuk materi dasar tentang matriks, silakan buka di materi Matriks Dasar – Pengertian, Jenis, Transpose, dsb.)

Dua matriks atau lebih, dapat dijumlakan hanya jika memiliki ordo yang sama. Penjumlahan dilakukan dengan menjumlahkan elemen-elemen yang berposisi sama. Contoh:

Jika \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix} dan B = \begin{pmatrix} 3 & 6 \\ 4 & 7 \\ 5 & 8 \end{pmatrix},

maka:

A + B = \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix} + \begin{pmatrix} 3 & 6 \\ 4 & 7 \\ 5 & 8 \end{pmatrix}

= \begin{pmatrix} 1+3 & 4+6 \\ 2+4 & 5+7 \\ 3+5 & 6+8 \end{pmatrix} = \begin{pmatrix} 4 & 10 \\ 6 & 12 \\ 8 & 14 \end{pmatrix}

Lihat juga materi StudioBelajar.com lainnya:
Logika Matematika
Transformasi Geometri

Sama halnya dengan penjumlahan, pengurangan dapat dilakukan hanya jika dua matriks atau lebih, memiliki ordo yang sama. Pengurangan dilakukan terhadap elemen-elemen yang berposisi sama.

Contoh:

Jika \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix} dan B = \begin{pmatrix} 3 & 6 \\ 4 & 7 \\ 5 & 8 \end{pmatrix},

maka:

B - A = \begin{pmatrix} 3 & 6 \\ 4 & 7 \\ 5 & 8 \end{pmatrix} - \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix}

= \begin{pmatrix} 3-1 & 6-4 \\ 4-2 & 7-5 \\ 5-3 & 8-6 \end{pmatrix} = \begin{pmatrix} 2 & 2 \\ 2 & 2 \\ 2 & 2 \end{pmatrix}

Sifat dari penjumlahan dan pengurangan matriks:

  • A + B = B + A
  • (A + B) + C = A + (B + C)
  • A – B ≠ B – A

Perkalian Matriks

Matriks dapat dikalikan dengan sebuah bilangan bulat atau dengan matriks lain. Kedua perkalian tersebut memiliki syarat-syarat masing-masing.

Perkalian Matriks dengan bilangan bulat

Suatu matriks dapat dikalikan dengan bilangan bulat, maka hasil perkalian tersebut berupa matriks dengan elemen-elemennya yang merupakan hasil kali antara bilangan dan elemen-elemen matriks tersebut. Jika matriks A dikali dengan bilangan r, maka r.A = (r.a_{ij}). Contoh:

Jika \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix} dan bilangan r = 2, maka:

r.A = 2 . \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix} = \begin{pmatrix} 2.1 & 2.4 \\ 2.2 & 2.5 \\ 2.3 & 2.6 \end{pmatrix} = \begin{pmatrix} 2 & 8 \\ 4 & 10 \\ 6 & 12 \end{pmatrix}

Perkalian matriks dengan bilangan bulat dikombinasikan dengan penjumlahan atau pengurangan matriks dapat dilakukan pada matriks dengan ordo sama. Berikut sifat-sifat perkaliannya:

  • r(A + B) = rA + rB
  • r(A – B) = rA – rB

Perkalian dua matriks

Perkalian antara dua matriks yaitu matriks A dan B, dapat dilakukan jika jumlah kolom A sama dengan jumlah baris B. Perkalian tersebut menghasilkan suatu matriks dengan jumlah baris sama dengan matriks A dan jumlah saman dengan matriks B, sehingga:

perkalian matriks

Elemen-elemen matriks C_{(m \times s)} merupakan penjumlahan dari hasil kali elemen-elemen baris ke-i matriks A dengan kolom ke-j matiks B. Berikut skemanya:

perkalian elemen matriks

Misalkan matriks A memiliki ordo (3 x 4) dan matriks B memiliki ordo (4 x 2), maka matriks C memiliki ordo (3 x 2). Elemen C pada baris ke-2 dan kolom ke-2 atau a22 diperoleh dari jumlah hasil perkalian elemen-elemen baris ke-2 matriks A dan kolom ke 2 matriks B. Contoh:

A = \begin{pmatrix} 2 & 1 & 4 & 3 \\ 2 & 5 & 1 & 2 \\ 1 & 3 & 2 & 2 \end{pmatrix} dan B = \begin{pmatrix} 1 & 3 \\ 3 & 2 \\ 2 & 5 \\ 1 & 4 \end{pmatrix}

maka:

A \cdot B = C = \begin{pmatrix} 2 & 1 & 4 & 3 \\ 2 & 5 & 1 & 2 \\ 1 & 3 & 2 & 2 \end{pmatrix} \cdot \begin{pmatrix} 1 & 3 \\ 3 & 2 \\ 2 & 5 \\ 1 & 4 \end{pmatrix}

C = \begin{pmatrix} (a_{11}b_{11} + a_{12}b_{21} + a_{13}b_{31} a_{14}b_{41}) & (a_{11}b_{12} + a_{12}b_{22} + a_{13}b_{32} a_{14}b_{42}) \\ (a_{21}b_{11} + a_{22}b_{21} + a_{23}b_{31} a_{24}b_{41}) & (a_{21}b_{12} + a_{22}b_{22} + a_{23}b_{32} a_{24}b_{42}) \\ (a_{31}b_{11} + a_{32}b_{21} + a_{33}b_{31} a_{34}b_{41}) & (a_{31}b_{12} + a_{32}b_{22} + a_{33}b_{32} a_{34}b_{42}) \end{pmatrix}

C = \begin{pmatrix}(2.1 + 1.3 + 4.2 + 3.1) & (2.3 + 1.2 + 4.5 + 3.4) \\ (2.1 + 5.3 + 1.2 + 2.1) & (2.3 + 5.2 + 1.5 + 2.4) \\ (1.1 + 3.3 + 2.2 + 2.1) & (1.3 + 3.2 + 2.5 + 2.4) \end{pmatrix}

C = \begin{pmatrix} 16 & 40 \\ 21 & 29 \\ 16 & 27 \end{pmatrix}

Perlu diingat sifat dari perkalian dua matriks bahwa:

A x B ≠ B x A

Sebagai pembuktian, diketahui A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} dan B = \begin{pmatrix} 2 & 5 \\ 3 & 4 \end{pmatrix} maka:

AB = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 2 & 5 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 8 & 13 \\ 7 & 14 \end{pmatrix}

BA = \begin{pmatrix} 2 & 5 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 12 & 9 \\ 11 & 10 \end{pmatrix}

Terbukti bahwa A x B ≠ B x A. Ada sifat-sifat lain dari perkalian matriks dengan bilangan atau dengan matriks lain, sebagai berikut:

  • k(AB) = (kA)B
  • ABC = (AB)C = A(BC)
  • A(B + C) = AB + AC
  • (A + B)C = AC + BC

Determinan Matriks

Determinan dari suatu matriks A diberi notasi tanda kurung, sehingga penulisannya adalah |A|. Determinan hanya bisa dilakukan pada matriks persegi.

Determinan matriks ordo 2×2

Jika A = \begin{matrix} a & b \\ c & d \end{matrix} maka determinan A adalah:

|A| = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc

Determinan matriks ordo 3×3 (aturan Sarrus)

Jika A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} maka determinan A adalah:

determinan matriks

= aei + bfg + cdg – ceg – afh – bdi

Determinan matriks memiliki sifat-sifat berikut:

1. Determinan A = Determinan AT

2. Tanda determinan berubah jika 2 baris/2 kolom yang berdekatan dalam matriks ditukar

sifat sifat determinan matriks

3. Jika suatu baris atau kolom sebuah determinan matriks memiliki faktor p, maka p dapat dikeluarkan menjadi pengali.

\begin{vmatrix} 1 & 2 & 5 \\ 2 & 6 & 8 \\ 4 & 5 & 2 \end{vmatrix} = \begin{vmatrix} 1 & 2 & 5 \\ (2.1) & (2.3) & (2.4) \\ 4 & 5 & 2 \end{vmatrix} = 2 \begin{vmatrix} 1 & 2 & 5 \\ 1 & 3 & 4 \\ 4 & 5 & 2 \end{vmatrix}

4. Jika dua baris atau dua kolom merupakan saling berkelipatan, maka nilai determinannya adalah 0.

\begin{vmatrix} 1 & 2 \\ 3 & 6 \end{vmatrix} = 3 \begin{vmatrix} 1 & 2 \\ 1 & 2 \end{vmatrix} = 3[(1.2) - (2.1)] = 0

5. Nilai determinan dari matriks segitiga atas atau bawah adalah hasil kali dari elemen-elemen diagonal saja.

\begin{pmatrix} 1 & 0 & 0 \\ 2 & 6 & 0 \\ 4 & 5 & 2 \end{pmatrix} = (1.6.2) = 12

Invers Matriks

Suatu matriks A memiliki invers (kebalikan) jika ada matriks B yang dapat membentuk persamaan AB = BA = I, dengan I adalah matriks identitas. Invers dari suatu matriks berordo (2 x 2) seperti A = \begin{matrix} a & b \\ c & d \end{matrix} dapat dirumuskan sebagai:

A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}

Invers matriks memiliki sifat-sifat berikut:

  • AA-1 = A-1A = I
  • (A-1)-1 = A
  • (AB)-1 = B-1A-1
  • Jika AX = B, maka X = A-1B
  • Jika XA = B, maka X = BA-1

Contoh Soal Matriks dan Pembahasan

Contoh Soal 1

Suatu perkalian matriks \begin{pmatrix} 1 & x \end{pmatrix} \begin{pmatrix} 6 & -2 \\ -3 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ x \end{pmatrix} menghasilkan matriks nol. Tentukan nilai x yang memenuhui persamaan tersebut!

Pembahasan:

\begin{pmatrix} 1 & x \end{pmatrix} \begin{pmatrix} 6 & -2 \\ -3 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ x \end{pmatrix} = 0

\begin{pmatrix}6 - 3x & -2 + x \end{pmatrix} \begin{pmatrix} 1 \\ x \end{pmatrix} = 0

6 - 3x + (-2 + x)x = 0

x^2 - 2x - 3x + 6 = 0

x^2 - 5x + 6 = 0

(x-2)(x-3)

Maka nilai x yang memenuhi adalah x1 = 2 dan x2 = 3.

Contoh Soal 2

Jika matriks \begin{pmatrix} 9 & 7 \\ 5 & 4 \end{pmatrix} dan \begin{pmatrix} x-1 & x-12 \\ -x & x+4 \end{pmatrix} saling invers, tentukan nilai x!

Pembahasan:

Diketahui bahwa kedua matriks tersebut saling invers, maka berlaku syarat AA-1 = A-1A = I.

Sehingga:

\begin{pmatrix} 9 & 7 \\ 5 & 4 \end{pmatrix} \begin{pmatrix} x-1 & x-12 \\ -x & x+4 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}

\begin{pmatrix} 9(x-1) - 7x & 9(x-12) + 7(x+4) \\ 5(x-1) - 4x & 5(x-12) + 4(x+4) \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}

Sehingga pada elemen baris ke-1 kolom ke-1 memiliki persamaan:

9(x – 1) – 7x = 1

9x – 9 – 7x = 1

2x = 10

x = 5

Kenapa Belajar Matriks Itu Penting?

Belajar matriks dalam matematika itu penting karena beberapa alasan berikut:

  1. Pemecahan Masalah yang Lebih Efisien: Matriks memungkinkan kita untuk menyederhanakan dan menyelesaikan permasalahan matematika yang kompleks dengan lebih efisien. Misalnya, dalam perhitungan sistem persamaan linear, matriks dapat digunakan untuk menemukan solusi dengan cepat dan elegan.
  2. Aplikasi di Berbagai Bidang: Matriks memiliki aplikasi yang luas di berbagai bidang, termasuk fisika, rekayasa, statistik, ekonomi, ilmu komputer, dan banyak lagi. Dalam fisika, matriks digunakan untuk menjelaskan fenomena seperti rotasi dan transformasi objek. Dalam ekonomi, matriks digunakan untuk menganalisis pertumbuhan ekonomi dan stok pasar. Dalam ilmu komputer, matriks digunakan dalam pengolahan gambar dan grafik komputer.
  3. Pemahaman Konsep Dasar Aljabar Linier: Matriks merupakan dasar dari aljabar linier, sebuah cabang matematika yang sangat penting. Memahami konsep matriks membantu siswa dalam memahami konsep aljabar linier lainnya seperti vektor, ruang vektor, transformasi linier, dan nilai eigen.
  4. Pengembangan Kemampuan Analitis dan Logis: Belajar matriks melatih kemampuan analitis dan logis. Siswa belajar bagaimana mengorganisir dan menginterpretasikan data dalam bentuk matriks serta menerapkan operasi matriks untuk menyelesaikan masalah.
  5. Penggunaan dalam Teknologi Modern: Matriks sangat penting dalam perkembangan teknologi modern. Misalnya, dalam kecerdasan buatan dan pembelajaran mesin, matriks digunakan untuk mengolah data besar dan menjalankan algoritma. Dalam grafik komputer, matriks digunakan untuk manipulasi gambar dan animasi.
  6. Dasar untuk Pembelajaran Lebih Lanjut: Memahami matriks adalah langkah penting untuk mempelajari topik matematika dan ilmu pengetahuan yang lebih maju. Misalnya, dalam matematika tingkat lanjut, matriks digunakan dalam kalkulus dan analisis kompleks.
  7. Keterampilan Pemecahan Masalah: Dalam belajar matriks, siswa mengembangkan keterampilan pemecahan masalah yang dapat diterapkan di luar konteks matematika, seperti berpikir sistematis dan menyelesaikan masalah dengan langkah-langkah logis.

Karena alasan-alasan ini, matriks dianggap sebagai konsep kunci dalam matematika yang memberikan dasar kuat bagi siswa untuk berbagai aplikasi praktis dan teoritis di banyak bidang.

 

Artikel: Matriks – Perkalian, Determinan, Invers, Rumus & Contoh Soal
Kontributor: Alwin Mulyanto, S.T.
Alumni Teknik Sipil FT UI

Materi StudioBelajar.com lainnya:

  1. Pengertian, Rumus, dan Operasi Vektor
  2. Persamaan Kuadrat
  3. Trigonometri